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Abstract. We compare two approximate perturbation
schemes which were developed recently to deal with the
(quasi)degeneracy problem in many-body perturbation
theory. We conclude that although the two methods
were introduced on quite different theoretical grounds,
their performances are quite similar, and present an
improvement over traditional perturbation theory. Both
methods are cheap in computation time, but cannot
compete in accuracy with more sophisticated schemes
such as complete-active-space perturbation theory or
dressed particle theories.
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1 Introduction

Perturbation theory (PT) is an efficient tool to compute
electronic correlation energies and many other kinds of
weak interactions in various fields. Although this theory
does not give an upper bound to the total energy, it
presents numerous advantages (conceptual and practical
simplicity, ability of giving size-consistent results, in-
variance under unitary transformations, analytical first
and second derivatives), and is therefore widely used.
By limiting the perturbational treatment to second
order only, one has to fulfill two requirements for the
applicability of nondegenerate PT: the interactions
(perturbation terms) should be small and the energy
difference between the reference state and the lowest
excited state should not be small. When the second
condition is not met, we face the quasidegenerate (or
near-degeneracy) problem which is responsible, for
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example, for the bad behavior of low-order PT for
describing molecular dissociation [1]. While the problem
of exact degeneracy (zero-energy denominators) can be
treated by standard techniques, quasidegenerate cases
must receive particular attention [2-5].

Even if many other more sophisticated methods
[coupled cluster, complete active space (CAS), CASPT,
multireference (MR)PT, MR configuration interaction
(CI), ...] can be free of this problem, they are far more
expensive in computer time and only applicable to small
molecular systems. In this article we focus our attention
only on single-determinant-based second-order PT
(PT2). In 1995, two different schemes were proposed
independently to extend the validity of PT2 to handle the
problem of quasidegeneracy. One, called degeneracy-
corrected PT second order (DCPT?2) [6], was first applied
by Kuhler et al. [7] in the quantum theory of molecular
vibrations. The second one borrowed an idea from op-
tical spectroscopy, where damping factors are used to
avoid singularities, and was named quasidegenerate PT
second order (QDPT2) [8, 9]. These methods have many
common features: a single determinantal Hartree—Fock
reference state, uncoupled excited states, both require
the calculation of the same terms as traditional PT2.
Therefore, the computational cost is very similar for
DCPT2, QDPT2 and traditional PT2. They are also very
easily implemented in any quantum chemical package
which can perform PT2 computations. Moreover, since
they do not require the calculation of any other terms,
gradients and Hessians can easily be reached.

The theoretical backgrounds of the two schemes are
briefly summarized in the following section. We compare
the performances of these two different schemes on a set
of chosen molecular systems within the Moller—Plesset
(MP) partitioning [10] in Sect. 3. A study on the H,
molecule will apply the Epstein—Nesbet (EN) partition-
ing [11, 12] as well. The behavior of the two approaches
at intermediate interatomic distances will be analyzed in
some detail.

Prior to publishing the two schemes discussed earlier,
in 1993, Lepetit and Malrieu [13] proposed an inge-
nious method, a bit more sophisticated than DCPT,



in which the diagonal elements of the 2 x 2 matrices
were ‘“‘dressed” by incorporating higher-order effects
(EPV terms). Since the dressing involves the eigenvec-
tors of the 2 x 2 matrices, it requires an iterative
procedure.

2 Theoretical background

The Rayleigh—Schrédinger (RS) PT2 gives the tradition-
al formula for one contribution:
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Ey — Ey

where Wy, represents the matrix element of the pertur-
bation between the ground state (referred to with the
subscript 0) and an excited state (labeled with the letter
k), Ey and E; are the zero-order energies of the two
states. The structure of Eq. (1) clearly shows that as E
approaches Ej this term tends to infinity, thus producing
an unreliable PT correction. Two simple methods for
correcting this phenomenon are discussed later.

As previously mentioned, DCPT2 originated from
the quantum theory of molecular vibration and was also
applied to electronic structure calculations. The idea
behind it is simple: given a two-level system, the RS
perturbation series can be exactly summed leading to the
infinite-order result for level £:

1
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where E} is the energy difference between the two states,
which does not contain any energy denominator and is
thus clearly applicable in a quasidegenerate situation as
well. Applying this formula for a multilevel system, one
simply sums over all states,
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which evidently involves the approximation that the
interaction of the ground state with various excited
states is treated independently, i.e., no coupling between
excited states is accounted for. This approximation is in
agreement with the general spirit of a second-order
theory.

In the QDPT2 method, one also starts from a two-
level model system, for which a complex level shift
parameter is introduced,
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where k refers to the excited state. With the aim of

having real corrections for any I'y, we take the absolute

value of Eq. (4):
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The determination of the parameter I'y can be made
either by requiring that Eq. (5) be exact for the fully
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degenerate limit, E; = E;, or by demanding that an
expansion of the square root in Eq. (5) produce the
fourth-order contribution with the same coefficient as
would emerge in fourth-order RSPT [14]. The resulting
parameter is I’y = Wy, in the former case, while it is
I, = 2Wy if the latter criterion is applied.

Previous numerical studies [14, 15] suggest that the
choice I'y = 2W,; is more appropriate for many cases,
but then, of course, the formula will not be exact in the
completely degenerate limit. By choosing I'y = Wy,
the QDPT2 and the DCPT2 methods go to the same
degenerate limit.

Going to multilevel systems, one keeps the structure
of the previous equation and simply sums to all excited
levels:
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In a multilevel system, an apparent disadvantage of Eq.
(6) is that it is not invariant to unitary transformations
within degenerate subsets of excited states. This problem
can, in principle, be avoided by using averaged I" values
for degenerate subsets. In practice, however, we have
found it more appropriate to fix the degenerate vectors
in a unique manner. For example, in the orbital form
of Eq. (6), we apply a localization transformation for
degenerate subsets of molecular orbitals (MOs), which
then keeps the size extensivity of the results.!

An advantage of the damping procedure described
here is that it is not restricted to second-order effects:
third-order correlation energies can also be evaluated in
a straightforward manner [8, 9]. If it is not the lowest
state that is accounted for perturbatively, the two
methods outlined earlier still apply. The only difference
is that one should take care which root of the 2 x 2
matrix is chosen in the case of DCPT2. As for the
QDPT?2 expression, the sign of each term should be kept
from the original formula.

The formulae are quite general in the sense that they
can be applied to any given partitioning of the Hamil-
tonian. The most straightforward is to use the MP
partitioning, where the perturbation operator, W, is the
difference between the Hamiltonian and the Fockian.
Most of the numerical calculations presented here were
done with the MP scheme. We have to emphasize,
however, that the exactness of the DCPT2 formula
for two-level systems holds only if one applies the
EN partitioning, where the diagonals of the CI matrix
define the zero-order energies and the offdiagonals
constitute the perturbation. Therefore, in the case study
on the H, molecule, we also performed comparative
calculations for the EN scheme. For many-electron
systems, however, the EN partitioning is ill defined:
it leads to quite different results in a determinantal
basis or if configuration state functions (CSFs) are
used; in addition, the results of different spin-adapta-

Violation of orbital invariance is quite unfortunate also from the
point of view of size extensivity, since one set of MOs may fulfill
this latter requirement while another set may violate it.
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tion schemes are also not the same. This well-known
deficiency of the EN partitioning [16, 17] is a conse-
quence of the violation of unitary invariance of this
scheme. Therefore, many-electron systems are studied
here only within the MP partitioning. For the H;
molecule, EN calculations are performed using a spin-
adapted basis, which is unique in the special case of a
two-electron system.

The idea of complex damping of quasidegenerate
perturbation formulae was also investigated by Forsberg
and Malmqvist [18], who, instead of taking the modulus
of the complex expression, considered the real part of
Eq. (4). They performed MRPT calculations with a
generalization of this damped formula by selecting the
magnitude of the damping factor empirically.

3 Results and discussion

This section presents a numerical comparison of second-
order correlation energies as obtained from the DCPT2
and QDPT?2 formulae. As a basis of the comparison, we
take some of the model systems considered by Assfeld
et al. [6]. Then, prototype potential curves for single-
bond dissociation of H, and F, are presented.

The energies of several molecules in the 6-311G**
basis set [19] using a Cartesian (6-) d set as polarization
functions on heavy atoms are listed in Table 1. The
equilibrium geometries are taken from the work of
Assfeld et al. [6]. In the first column, the total energies
are presented at the second-order MP (MP2) equilibrium
geometry, while the second and third columns show
energy differences relative to the equilibrium energy at
somewhat increased bond lengths. Accordingly, the level
of quasidegeneracy increases from the left to the right in
the table: there is no such effect around equilibrium but
as a single bond length increases the corresponding
bonding and antibonding MOs tend to become degen-
erate. Among the selected methods, we include standard
MP2 values (i.e., without any degeneracy correction)
and the CC with doubles (CCD) for comparison. Al-
though the latter method, being a single-reference
scheme, does not dissociate properly in the general case,
for single bond rupture it yields much better potential-
energy curves than MP2. The QDPT2 results were
obtained using I’y = 2Wy (cf. Eq. 6).

The conclusions we can draw from Table 1 are as
follows. At equilibrium, neither DCPT2 nor QDPT2
differs significantly from MP2, the differences being
typically in the fourth to fifth digit (in atomic units). At
partial dissociation (third column), these differences
appear already in the second or third digits, emphasizing
that the uncorrected MP2 values are unrealistic and the
importance of quasidegeneracy corrections. The differ-
ences between DCPT2 and QDPT2, however, are still
smaller than their deviation from MP2, especially at
large distances. This indicates that both methods ac-
count for the same effect in a similar manner.

On the basis of the data reported in Table 1 it is not
possible to describe either DCPT2 or QDPT2 as being
better than the other. There are cases, such as that of the
HOF molecule, where QDPT?2 is astonishingly close to

CCD, but for the F; molecule, for example, DCPT2 is in
better agreement. A third type of case is represented by
the N, molecule, where both QDPT2 and DCPT2 are
quite far from CCD, indicating that this electronic sys-
tem cannot be described by a simple perturbative ac-
count of electron correlation with no coupling between
excitations. By comparing the perturbation schemes
presented here (DCPT2, QDPT2) to that of Lepetit and
Malrieu (SC2) on the example of the F, molecule in
Table 1, the effect of higher-order corrections incorpo-
rated in this latter method is apparent. Thus, the devi-
ation of the two former schemes from each other is
negligible if compared to the difference taken with SC2,
both at the equilibrium distance and at partially disso-
ciated arrangements.

Stronger degeneracy appears at longer bond lengths.
We studied this effect on the dissociation profiles of H,
and F, molecules (Figs. 1, 2). Two different partitionings
(MP and EN) were addressed for H,. The H; results are
compared with full CI (FCI) values, while CCD was
chosen for F, as a reference.

The H; curves in MP and EN partitionings are pre-
sented in Fig. 1a and b, respectively. One can see that
the three perturbation-based methods are quite similar
up to approximately twice the equilibrium distance. On
further increasing the bond lengths, MP2 diverges, while
the corrected curves remain regular. The DCPT2 results
tend to approach the CI ones at large distances, but they
show an unphysical maximum at around 3 A. The
QDPT?2 curve does not have this maximum; it has a nice
shape, but it exaggerates the dissociation energy com-
pared to FCI. Nevertheless, it represents a dramatic
improvement over the self-consistent field (SCF), which
fails to describe dissociation, and was not even plotted in
Fig. 1.

The situation is quite similar for F; plotted in Fig. 2,
where, for the reasons discussed earlier, only MP results
are included. The MP2 curve breaks down even more
rapidly, and DCPT?2 tends to a limit smaller than CCD
for large distances, in better agreement with experi-
mental data [20].

Regarding the results for H, in the EN partitioning,
we observe that standard second-order EN data are
useless above about 1.5 A, while the second-order
DCEN (DCEN2) ones are quite close to FCI in a wide
range of interatomic distance. This could be connected
to the fact that DCEN?2 is strictly equivalent to FCI
for a two-electron system in a minimal basis, and the
difference between these two curves in Fig. 1b arise
from coupling between excitation pairs. Therefore, the
unphysical maximum on the DCEN2 profile has been
strongly reduced. The second-order QDEN results in the
EN partitioning are similar to those in MP.

In conclusion, we may say that the simple degenera-
cy-correction schemes investigated in this article work
rather well for the weakly quasidegenerate situations
reported in Table 1. For the full dissociation problem
they offer a method, that although not qualitatively ac-
curate, eliminates the inapplicability of single-reference
PT2 for quasidegenerate situations.

Since both correction schemes are quite cheap, maybe
the method they have to compare with is the one by



Table 1. Total energies and en-
ergy differences taken with total
energy at equilibrium geometry
for several molecules in the
6-311G** basis. Besides the
perturbation theory (PT)
results, coupled cluster with
doubles (CCD) and multirefer-
ence self-consistent field

(SCF) (CASSCEF +PT2) results
are shown as references.

AE, = Etot(Ra) - Etot(R)a

AEb = Etot(Rb) — Etot (R)
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Etot Etot AEa Etot AEb
C>H, Ree = 1.2143A R, =18A R, =24A
DCMP2 —77.151483 ~76.940363 0.211120 -76.851925 0.299558
QDMP2 —-77.151310 -76.937816 0.213494 —76.834809 0.316501
MP2 —-77.151658 ~76.943033 0.208625 -76.871231 0.280427
CCD —77.164133 ~76.906767 0.257366 —76.754897 0.409236
C>H,4 Ree = 1.3355A R, =20A R, =27A
DCMP2 —78.385776 —78.219458 0.166318 -78.115638 0.270138
QDMP2 —78.385678 -78.218257 0.167421 —78.107094 0.278584
MP2 —78.385876 —78.220741 0.165135 —78.125611 0.260265
CCD —78.412231 —78.234226 0.178005 —78.098770 0.313461
HOF Ror = 1.4221A R, =2.1A Ry, =28A
DCMP2 —-175.252332 -175.169071 0.083261 —-175.123339 0.128993
QDMP2 —-175.252244 -175.165218 0.087026 -175.106806 0.145438
MP2 —-175.252421 -175.173461 0.07896 —-175.146996 0.105425
CCD -175.255141 -175.166059 0.089082 -175.101837 0.153304
C,Hg Ree = 1.5263 A R, =2.3A Ry, =3.0A
DCMP2 —79.612519 -79.500722 0.111797 -79.419376 0.193143
QDMP2 -79.612505 ~79.500621 0.111884 —-79.418101 0.194404
MP2 —79.612533 -79.500823 0.11171 —~79.420767 0.191766
CCD ~79.646759 -79.537279 0.109480 ~79.455049 0.191710
Li, RuiLi = 2.7357A R,=4.1A R, =55A
DCMP2 -14.915605 -14.893001 0.022604 -14.870186 0.045419
QDMP2 —-14.915582 -14.892933 0.022649 —-14.869746 0.045836
MP2 —-14.915629 —14.893070 0.022559 —14.870664 0.044965
CCD -14.930758 -14.907811 0.022947 -14.891875 0.038883
LiH Riin = 1.5939 A R, =24A R, =3.1A
DCMP2 -8.022020 ~7.985659 0.036361 -7.947411 0.074609
QDMP2 —8.022007 —7.985641 0.036366 —7.947388 0.074619
MP2 -8.022032 ~7.985676 0.036356 —7.947434 0.074598
CCD -8.031879 ~7.996980 0.034899 —-7.961602 0.070277
HF Ren = 09184 A R,=14A R, =18A
DCMP2 —100.294235 —-100.191897 0.102338 —-100.109905 0.18433
QDMP2 —100.294168 -100.191695 0.102473 —100.108730 0.185438
MP2 —-100.294303 -100.192101 0.102202 —-100.111160 0.183143
CCD —-100.295672 —-100.193523 0.102149 —-100.111293 0.184379
CASSCF(4,4) -100.291824 —-100.185318 0.106506 —-100.118319 0.173505
+PT2
F, Rer = 1.4068 A R,=21A R, =28A
DCMP2 —-199.210102 —~199.135813 0.074289 —199.118463 0.091639
QDMP2 —-199.209451 -199.126116 0.083335 -199.082771 0.12668
SC2 —199.290242 —-199.232593 0.057649 —199.201845 0.088397
MP2 -199.210775 —~199.147860 0.062915 —-199.179902 0.030873
CCD -199.209813 —-199.138739 0.071074 —-199.113241 0.096572
CASSCF(4,4) —~199.175060 —-199.152854 0.022206 —-199.147042 0.028018
+PT2
HOOF Roo = 1.3663 A R, =20A R,=27A
DCMP2 —-250.265731 -250.193113 0.072618 —-250.147319 0.118412
QDMP2 —-250.265674 -250.191144 0.07453 —-250.135223 0.130451
MP2 —-250.265787 -250.195246 0.070541 —-250.163488 0.102299
CCD -250.264823 -250.186896 0.077927 —-250.162438 0.136412
N, Ran = 11108 A R,=17A R, =22A
DCMP2 -109.341613 -109.187672 0.153941 —-109.274372 0.067241
QDMP2 -109.341215 -109.179055 0.16216 -109.227993 0.113222
MP2 -109.342016 -109.196895 0.145121 -109.329171 0.012845
CCD —-109.336030 -109.040736 0.295294 -108.951017 0.385013
CASSCF(4,4) -109.337036 -109.037248 0.299788 -108.926857 0.410179

+PT2
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Fig. 1. Potential-energy curves for the H, molecule in the (311/11/
1) basis set [23]. The results obtained using perturbation theory
based on Moller—Plesset (M P) partitioning are plotted in a; those
computed with Epstein—Nesbet (EN) partitioning are shown in b.
Full line: second-order PT (PT2); dashed line: degeneracy-corrected
PT2 (DCPT2); dotted line: quasidegenerate (QDPT?2); dot-dashed
line: full configuration interaction (CI)
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Fig. 2. Dissociation curve for the F, molecule in the 6-311G**
basis set [19], computed with second-order PT schemes (MP2,
DCMP2 and QDMP2) and the coupled cluster with doubles (CCD)
method

Lepetit and Malrieu [13] mentioned in the Introduction.
That method, suming up all EPV terms, gives very low
total energies but quite accurate potential curves. The
essential difference is that in the simpler schemes (QDPT
and DCPT), we do not want to affect MP2 results
appreciably where the single-determinant reference state
is qualitatively appropriate. The dressed Hamiltonian of
Lepetit and Malrieu yields a larger fraction of dynamical
correlation energy, even in the vicinity of equilibrium
distances.
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